DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH Research Conducted and Supported by the National Institutes of Health (NIH) in Addressing Zika Virus Disease Testimony before the House Committee on Foreign Affairs Subcommittee on \$1.8 billion in emergency funding to enhance our ongoing efforts to prepare for and respond to the Zika virus, both domestically and internationally, including work on the development of vaccines and diagnostics and to improve scientific understanding of the disease. # **OVERVIEW OF ZIKA VIRUS** Zika virus is a flavivirus. These viruses More recently, the outbreak of Zika virus disease in Brazil has coincided with an increase in the number of infants born with microcephaly, a birth defect characterized by an abnormally small head resulting from an underdeveloped and/or damaged brain. In addition, increases in suspected cases of GBS have been noted in Brazil and other countries in the Americas. Further research is needed to better understand the effect of Zika virus infection on the body, particularly during pregnancy; to investigate the potential relationship between Zika infection and microcephaly, as well as the potential relationship between Zika infection and GBS; and to develop better diagnostics, candidate treatments and vaccines, and novel methods of vector control. Currently, no vaccines or specific therapeutics are available to prevent or treat Zika virus disease. Improved diagnostic tests also are needed because Zika virus infection causes non-specific symptoms and can be difficult to distinguish from other mosquito-borne infections such as dengue, malaria, and chikungunya when conducting antibody screening. Moreover, current antibody screening tests can be falsely positive or inconclusive if the individual was previously infected with related viruses such as dengue, which is prevalent in South America and the Caribbean. ## THE SCOPE OF NIH RESEARCH ON ZIKA VIRUS NIAID has a longstanding commitment to flavivirus research, including extensive efforts to combat diseases such as dengue, West Nile virus, and yellow fever. This research has informed our understanding of the viral genetics, vector biology, and pathogenesis of flaviviruses and will be critical in efforts to learn more about Zika virus. NIAID has responded to the newly emerging Zika virus disease outbreak by expanding our portfolio of basic research on Zika virus and other flaviviruses. For example, NIAID-supported experts have begun characterizing the NIAID also is partnering with other NIH institutes, the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development (NICHD), the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Dental and Craniofacial Research (NIDCR), to accelerate Zika virus research as it relates to the mother-infant pair. The Institutes are planning to issue a notice that indicates NIH's interest in supporting research to understand transmission, optimal screening and management in pregnancy, and the mechanisms by which Zika virus affects the developing nervous system, including potential links to microcephaly. ### **DEVELOPING TOOLS TO COMBAT ZIKA VIRUS** In response to public health concerns about Zika virus, NIAID has accelerated ongoing flavivirus research efforts to speed the development of tools that could help control current and future outbreaks of Zika virus. #### **Vector Control** For many years, NIAID has supported extensive research to understand the biology of mosquitoes to help develop tools to limit the spread of deadly mosquito-borne diseases such as dengue and malaria. This research aids in vector control strategies to reduce mosquito bites or limit mosquito populations candidates flaviviruses to determine if they are effective against Zika virus. Promising drug candidates identified by the assay could be further tested in a small animal model of Zika virus infection developed with NIAID support. The ultimate goal of NIAID-supported flavivirus therapeutic research is to develop a broad-spectrum antiviral drug that could be used against a variety of flaviviruses, including Zika. #### **Emergency Request for Vaccine Research and Diagnostic Development and Procurement** As I noted in the introduction to my testimony, the Administration has announced an emergency-funding request of more than \$1.8 billion to combat the Zika virus both domestically and internationally. Included in the request are resources for Zika-related vaccine research, rapid advanced development, and commercialization of new vaccines and diagnostic tests for Zika virus. The funding will allow NIH to build upon existing resources and work to develop a vaccine for Zika virus and the chikungunya virus, which is spread by the same type of mosquito. Funding will accelerate this work and improve scientific understanding of the disease to inform the development of additional tools to combat it. The request also includes resources for FDA to support Zika virus medical-product development, including the next-generation diagnostic devices. We look forward to working with the Congress to implement this request. #### **COLLABORATIONS** Investigation of emerging and re-emerging infectious diseases requires expertise from a variety of fields. In the case of Zika virus, studies of virology, immunology, natural history, neurology, and neonatology will be required to fully understand the pathogenesis of this infection. As mentioned previously, NIAID is partnering with other NIH institutes including NICHD and NINDS to better understand the potential association between Zika virus infection and neonatal defects. In addition, NIAID will partner with NINDS to investigate microcephaly linked to Zika virus infection and how these cases may differ from microcephaly cause hit keaf(s) 100ETBTs.11 | inform the global public health response in partnership with the affected communities and | | |---|--| |